亲宝软件园·资讯

展开

golang 自旋锁 golang 自旋锁的实现

one_zheng 人气:1

CAS算法(compare and swap)

CAS算法是一种有名的无锁算法。无锁编程,即不使用锁的情况下实现多线程之间的变量同步,也就是在没有线程被阻塞的情况下实现变量的同步,所以也叫非阻塞同步(Non-blocking Synchronization)。CAS算法涉及到三个操作数

当且仅当 V 的值等于 A时,CAS通过原子方式用新值B来更新V的值,否则不会执行任何操作(比较和替换是一个原子操作)。一般情况下是一个自旋操作,即不断的重试。

自旋锁

自旋锁是指当一个线程在获取锁的时候,如果锁已经被其他线程获取,那么该线程将循环等待,然后不断地判断是否能够被成功获取,知直到获取到锁才会退出循环。

获取锁的线程一直处于活跃状态,但是并没有执行任何有效的任务,使用这种锁会造成 busy-waiting 。

它是为实现保护共享资源而提出的一种锁机制。其实,自旋锁与互斥锁比较类似,它们都是为了解决某项资源的互斥使用。无论是互斥锁,还是自旋锁,在任何时刻,最多只能由一个保持者,也就说,在任何时刻最多只能有一个执行单元获得锁。但是两者在调度机制上略有不同。对于互斥锁,如果资源已经被占用,资源申请者只能进入睡眠状态。但是自旋锁不会引起调用者睡眠,如果自旋锁已经被别的执行单元保持,调用者就一直循环在那里看是否该自旋锁的保持者已经释放了锁,“自旋”一词就是因此而得名。

golang实现自旋锁

type spinLock uint32
func (sl *spinLock) Lock() {
  for !atomic.CompareAndSwapUint32((*uint32)(sl), 0, 1) {
    runtime.Gosched()
  }
}
func (sl *spinLock) Unlock() {
  atomic.StoreUint32((*uint32)(sl), 0)
}
func NewSpinLock() sync.Locker {
  var lock spinLock
  return &lock
}

可重入的自旋锁和不可重入的自旋锁

文章开始的时候的那段代码,仔细分析一下就可以看出,它是不支持重入的,即当一个线程第一次已经获取到了该锁,在锁释放之前又一次重新获取该锁,第二次就不能成功获取到。由于不满足CAS,所以第二次获取会进入while循环等待,而如果是可重入锁,第二次也是应该能够成功获取到的。

而且,即使第二次能够成功获取,那么当第一次释放锁的时候,第二次获取到的锁也会被释放,而这是不合理的。

为了实现可重入锁,我们需要引入一个计数器,用来记录获取锁的线程数

type spinLock struct {
   owner int
   count int
}

func (sl *spinLock) Lock() {
    me := GetGoroutineId()
    if spinLock .owner == me { // 如果当前线程已经获取到了锁,线程数增加一,然后返回
        sl.count++
        return
    }
    // 如果没获取到锁,则通过CAS自旋
  for !atomic.CompareAndSwapUint32((*uint32)(sl), 0, 1) {
    runtime.Gosched()
  }
}
func (sl *spinLock) Unlock() {
   if rl.owner != GetGoroutineId() {
     panic("illegalMonitorStateError")
   }
   if sl.count >0 { // 如果大于0,表示当前线程多次获取了该锁,释放锁通过count减一来模拟
      sl.count--
    }else { // 如果count==0,可以将锁释放,这样就能保证获取锁的次数与释放锁的次数是一致的了。
      atomic.StoreUint32((*uint32)(sl), 0)
    }
}

func GetGoroutineId() int {
  defer func() {
    if err := recover(); err != nil {
      fmt.Println("panic recover:panic info:%v", err)   }
  }()

  var buf [64]byte
  n := runtime.Stack(buf[:], false)
  idField := strings.Fields(strings.TrimPrefix(string(buf[:n]), "goroutine "))[0]
  id, err := strconv.Atoi(idField)
  if err != nil {
    panic(fmt.Sprintf("cannot get goroutine id: %v", err))
  }
  return id
}


func NewSpinLock() sync.Locker {
  var lock spinLock
  return &lock
}

自旋锁的其他变种

1. TicketLock

TicketLock主要解决的是公平性的问题。

思路:每当有线程获取锁的时候,就给该线程分配一个递增的id,我们称之为排队号,同时,锁对应一个服务号,每当有线程释放锁,服务号就会递增,此时如果服务号与某个线程排队号一致,那么该线程就获得锁,由于排队号是递增的,所以就保证了最先请求获取锁的线程可以最先获取到锁,就实现了公平性。

可以想象成银行办理业务排队,排队的每一个顾客都代表一个需要请求锁的线程,而银行服务窗口表示锁,每当有窗口服务完成就把自己的服务号加一,此时在排队的所有顾客中,只有自己的排队号与服务号一致的才可以得到服务。

2. CLHLock

CLH锁是一种基于链表的可扩展、高性能、公平的自旋锁,申请线程只在本地变量上自旋,它不断轮询前驱的状态,如果发现前驱释放了锁就结束自旋,获得锁。

3. MCSLock

MCSLock则是对本地变量的节点进行循环。

4. CLHLock 和 MCSLock

都是基于链表,不同的是CLHLock是基于隐式链表,没有真正的后续节点属性,MCSLock是显示链表,有一个指向后续节点的属性。

将获取锁的线程状态借助节点(node)保存,每个线程都有一份独立的节点,这样就解决了TicketLock多处理器缓存同步的问题。

自旋锁与互斥锁

总结:

加载全部内容

相关教程
猜你喜欢
用户评论